Polynomial Matrix Approach to Independent Component Analysis: (part I) Basics

نویسندگان

  • Kenji Sugimoto
  • Masuhiro Nitta
چکیده

This paper proposes a method for blind system identification based on the independence of input signals. Under the assumption that the system is MIMO, square, and represented by a polynomial matrix fraction with constant numerator matrix, the method makes it possible to identify the system without observation of input signals. This rather challenging problem is solved by applying independent component analysis to an augmented state-space representation in order to estimate coefficients of the denominator polynomial matrix and the numerator matrix. Copyright c ©2005 IFAC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Matrix Approach to Independent Component Analysis: (part Ii) Application

This paper proposes two types of application of the method given in the paper (PART I). The first is suppression of disturbance with unknown dynamics in control systems. Assuming that a disturbance enters into a system independently of the control input signals, the method makes it possible to identify a denominator polynomial matrix of the disturbance dynamics, and then to design an H∞ control...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Soft Computation Using Artificial Neural Estimation And Linear Matrix Inequality Transmutation For Controlling Singularly-Perturbed Closed Time-Independent Quantum Computation Systems, Part A: Basics And Approach

This article presents basic background and approach methods that are needed for implementing a new method of intelligent control for time-independent quantum computing systems. This includes basic background on quantum computing, supervised neural networks, linear matrix inequalities, and model order reduction. The presented basics will be utilized in the second part of the paper for applying a...

متن کامل

Determination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial

Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005